
### NSCL Power Supply Maintenance and FRIB Power Supply Status Update

Brian K. Vaughn Power Supply Engineer

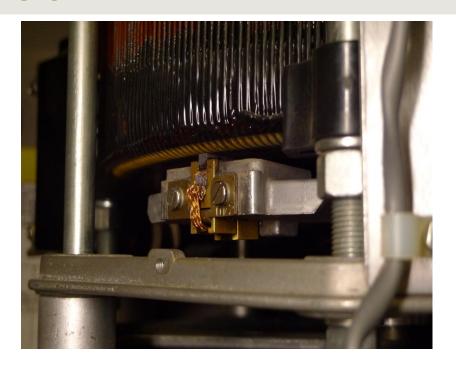




## NSCL – National Superconducting Cyclotron Laboratory



- Largest campus-based nuclear science facility in the US.
- World leader in rare-isotope research and nuclear science education.



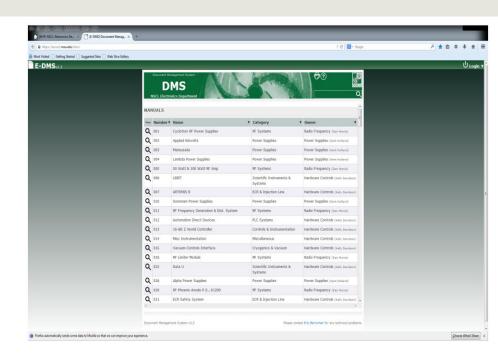

#### **NSCL** Power Supplies

- 989 Power Supplies support NSCL operations.
  - 521 High Voltage power supplies (HV PS).
  - 242 Superconducting Magnet power supplies (SCM PS).
  - 226 Room Temperature Magnet power supplies (RTM PS).
- 88 different model numbers.
- 160 spare power supplies.
- 133 SCM PS in operation were designed and built in-house.
- 762 NSCL power supplies will remain in operation after transition to FRIB accelerator line.
- 99% overall availability most failures due to high ambient temperatures.
  - Tracked in facility operating log.

## Power Supply Preventative Maintenance at NSCL

- All PS installations tested at rated voltage and current.
- Hipot testing of all HV components and HV floating structures to prevent installation of defective components or assemblies.
- Networked floor moisture sensors to alert for leaking coolant water.
- Other maintenance tasks include:
  - Periodic inspection of critical components – transistor fuses, cooling fans, etc.
  - Test of water flow switches.
  - Replacement of aged electrolytic capacitors.




Main Magnet Power Supply Variacs require periodic cleaning & brush replacement.

### Reliability Upgrades at NSCL

- Coupled-Cyclotron accelerator must operate until FRIB linear accelerator is operational sometime between 2018 and 2020.
- All other experimental equipment will continue in service after FRIB line commissioning.
- This complicates upgrade priorities power supplies for the coupled cyclotrons must have high (>>90%) availability, but will be out of service in 4-6 years.
- Requires extensive planning and analysis based on:
  - Reliability history for specific equipment
  - Age of equipment
  - Availability of spares
  - Time-to-repair or replace
  - Cost & funding

### Power Supply & Equipment Tracking at NSCL

- Document Management System (DMS) used as database for all Electrical Engineering documents.
- Periodic power supply inventories are undertaken to track equipment status and location.



#### NSCL Lab-Wide Spare Power Supply Inventory

| PS Model                    | Area | K1200<br>Balcony | Upper<br>K1200<br>Balcony | K500<br>Balcony | Roof | West High<br>Bay | ECR<br>Control<br>Room | K500 TCPS<br>Area | A1900 PS<br>Area | North Hall | N2 Vault | D-Line PS<br>Area | ReA3 High<br>Bay | ReA12 High<br>Bay | East High<br>Bay<br>Extension | East High<br>Bay - ReA3<br>Area | S800 Vault | South Hall | Electronics<br>Shop | PS Group<br>Offices &<br>Labs | Total<br>Number |
|-----------------------------|------|------------------|---------------------------|-----------------|------|------------------|------------------------|-------------------|------------------|------------|----------|-------------------|------------------|-------------------|-------------------------------|---------------------------------|------------|------------|---------------------|-------------------------------|-----------------|
|                             |      |                  |                           |                 |      |                  |                        |                   |                  |            |          |                   |                  |                   |                               |                                 |            |            |                     |                               |                 |
| ACCOPIAN                    |      |                  |                           |                 |      |                  |                        |                   |                  |            |          |                   |                  |                   |                               |                                 |            |            |                     |                               |                 |
| 150PT2AFHMP                 |      |                  |                           |                 |      |                  |                        |                   |                  |            |          |                   |                  |                   |                               |                                 |            |            | 1                   |                               | 1               |
| Y022LX2000                  |      |                  |                           |                 |      |                  |                        |                   |                  |            |          |                   |                  |                   |                               |                                 |            |            |                     | 1                             | 1               |
|                             |      |                  |                           |                 |      |                  |                        |                   |                  |            |          |                   |                  |                   |                               |                                 |            |            |                     |                               |                 |
| ALPHA POWER SUPPLIES        |      |                  |                           |                 |      |                  |                        |                   |                  |            |          |                   |                  |                   |                               |                                 |            |            |                     |                               |                 |
| 120V/500A ALPHA             |      |                  |                           |                 |      |                  |                        |                   |                  |            |          |                   |                  |                   |                               |                                 |            |            |                     |                               | 0               |
| 10V/200A ALPHA              |      |                  |                           |                 |      |                  |                        |                   |                  |            |          |                   |                  |                   |                               |                                 |            |            |                     |                               | 0               |
| 160/1000                    |      |                  |                           |                 | 1    |                  |                        |                   |                  |            |          |                   |                  |                   |                               |                                 |            |            |                     |                               | 1               |
|                             |      |                  |                           |                 |      |                  |                        |                   |                  |            |          |                   |                  |                   |                               |                                 |            |            |                     |                               |                 |
| APPLIED KILOVOLTS HP010Z1P0 | 125  |                  |                           |                 |      |                  |                        |                   |                  |            |          |                   |                  |                   |                               |                                 |            |            |                     | 1                             | 1               |



# Power supply database and planned PS tracking & documentation improvements

- Each PS in service is tracked:
  - Location (by area) and application.
  - PS address and name.
  - DIP switch setting and calibration.
  - Input power requirements and output current & voltage.
  - Communication protocol (serial, Ethernet, or analog).
- Planned enhancements to PS tracking:
  - Breaker panel, circuit breaker number, and location corresponding to each PS.
  - Rack location of each PS.
  - Magnet application and information by PS.
    - » Magnet inductance, mutual inductance.
  - Migration of DMS database to ADEPT.
  - Implementation of FRIB Controls relational database.
- Further details next slide to develop solution for PS history tracking.

### **PS Systems Database**

#### Configuration

- » Current facility configuration
  - · slots, device type, device properties

#### Logbook

» Maintenance / troubleshooting task details

#### Magnets

» Magnet name, location

#### Cables

- » Cable information
  - · Signal, type, tags, source, destination
- » Cable steps / status
  - · Pull, field test, label, bench terminate, bench test, field terminate

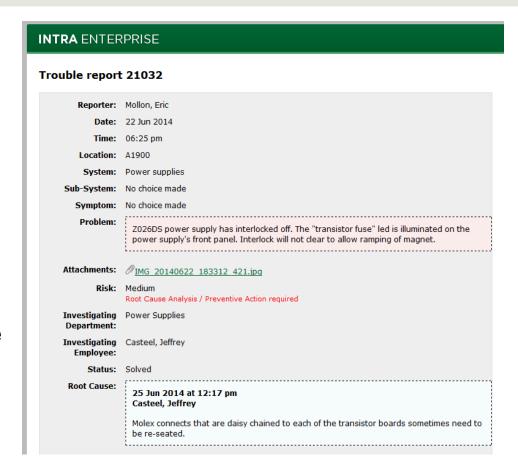
#### Calibration

- » Calibration constants, frequency compensation constants
- » Reminders
- » Device information
  - Serial number, model, calibration cycle, location, custodian, standard
- » Device model information
  - Model, manufacturer, calibration cycle, manual

#### Maintenance

» Periodic maintenance tasks, reminders, status

#### Naming


» PS name, cable name, magnet name

#### Control Signals (PV)

- » PS signal names
- The controls database tracks the current facility configuration and give reminders for maintenance / calibration tasks, however it does not keep details of device history
- A PS systems database will be developed to keep history of:
  - » System configuration and spares
  - » Detailed history of each PS
    - · Failures, RMAs, firmware
  - » Metadata
    - Serial number, calibration data, firmware/software version

### Power Supply Trouble Reports at NSCL

- Trouble Report system available to all lab employees.
- Used to initiate and track action on reports of safety concerns and engineering issues.
- Power supply group at NSCL has investigated & resolved 300+ trouble reports since system rollout (2006).



### **Hazard Mitigation at NSCL**

- Electrical safety training required for all lab personnel.
- Job safety analysis required for all nonstandard equipment procedures.
- Personal Protection
   Equipment & clothing
   issued to all maintenance personnel.
- Licensed electricians perform power distribution tasks.



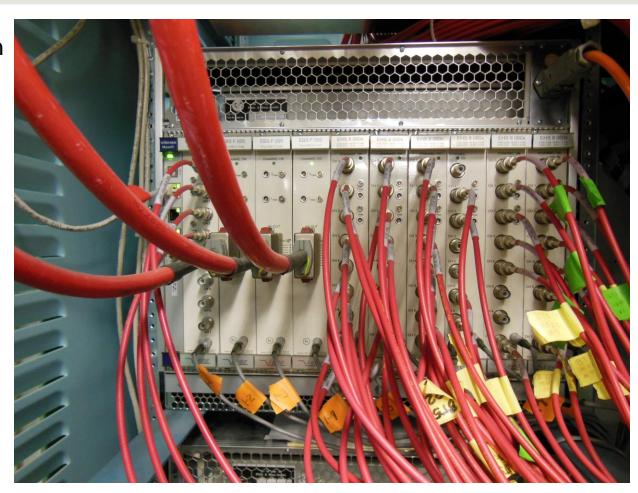
Lockout/Tagout mandatory for servicing electrical equipment and quarantine.

#### **New Power Supply Initiatives at NSCL**

- Replacement of linear power supplies with switch-mode converters.
- Implementing improved PS labeling requirements and on-site documentation.
- Implementing more consistent terminal cover requirements – anything with ≥ 50V, or ≥ 10J stored energy, or ≥ 10W power capability.

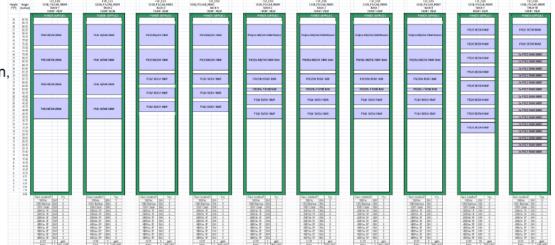


Replacement of obsolete power supplies.


#### FRIB – Facility for Rare Isotope Beams



- \$730M project, funded by DOE and MSU, to replace coupled-cyclotron accelerator with a "folded" linear accelerator.
- Upgrades facility to most powerful rare ion beam in world 400kW.
- Requires purchase, test, and installation of 847 new power supplies.


#### **Power Supplies for FRIB**

- Planning and specification largely complete – acquisition underway.
  - 299 RTM PS's.
  - 191 CM Heater PS's.
  - 287 SCM PS's.
  - 70 HV PS's. →
- 1609 total power supplies will support FRIB.
- Two new hires in Power Supplies Group.
- Emphasis on reliability, conversion efficiency, and power factor correction.
- Hipot testing up to 120 kV required for Ion Source Platform.



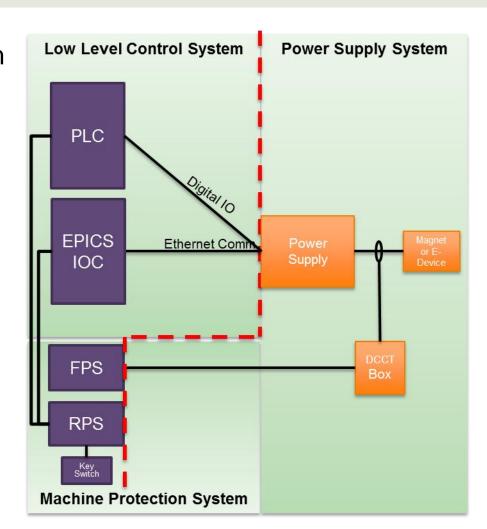
# System Requirements and Integration Requirements are Defined and Tracked

- Power supply integration
  - · Conventional Facilities
    - » Rack / Utility layouts →
    - » Alternating Current (AC) power, Heating, Ventilation, and Air Conditioning (HVAC), cooling water
    - » DC leads
    - » Cable tray
    - » Conduit
  - Controls
  - · Accelerator / Magnet Systems
    - » Power supply requirements / ICD
- Completed documents
  - Parameter List (<u>T10501-BL-000002</u>)
  - FRIB Power Supply Requirements ASD(<u>T30102-SP-000290</u>), ESD(<u>T40303-SP-000288</u>)
  - Preliminary FRIB Rack Counts and Power Estimate (T10503-CM-000037)
  - PS Systems Integration ICD (T31209-CM-000111)
  - PS Technical Description and Specifications SRD (T31209-SP-000084)
  - SCM PS Acquisition Strategy (<u>T31209-TD-000472</u>)
  - PS Production Plan (<u>T31209-PL-000108</u>)
  - Preliminary SCM PS Specs (<u>T31209-SP-000152</u>)
  - Preliminary RT Specifications (<u>T31209-SP-000153</u>)
  - HV PS Specifications (<u>T31209-SP-000154</u>)



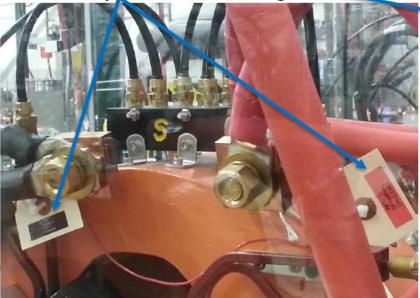
- Production Superconducting Magnet Power Supply ACL Plan (T31209-VP-000114)
- First Article and Pre-Production Superconducting Magnet Power Supply ACL Plan (<u>T31209-VP-000092</u>)
- Production High Voltage Power Supply ACL Plan (T31209-VP-000113)
- First Article High Voltage Power Supply ACL Plan (T31209-VP-000069)
- Room Temperature Magnet Power Supply ACL Plan (T31209-VP-000095)
- Space Use Case for Power Supplies (T31209-TD-000257)
- Specification for Ion Source High Voltage DC Isolation Transformer (T30504-SP-000188)

### Power Supply Interfaces Defined and Tracked


- This FRIB interface tracker spreadsheet serves as a tool to track Interface Requirements Documents between systems
- Interface tracker shown →

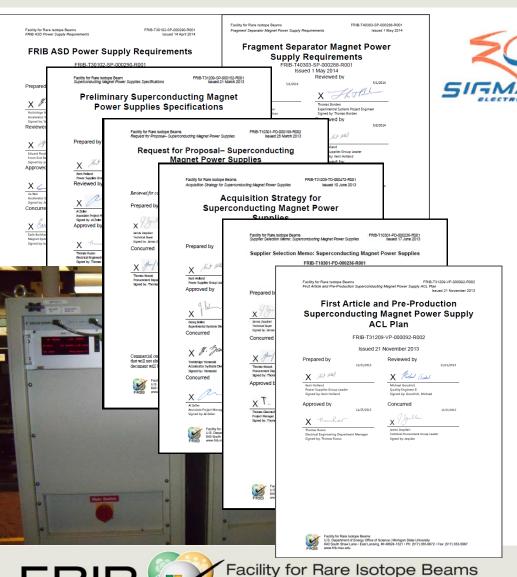
| Legend   |                 |              |                |    |
|----------|-----------------|--------------|----------------|----|
| 0        | ICD not requir  | red          |                |    |
| Y        | ICD required,   | not yet in l | DCC            |    |
| <u>T</u> | Link to ICD(s), | but detail   | s T.B.D. in IC | CD |
| <u>V</u> | Link to ICD(s)  |              |                |    |
| Acronyms |                 |              |                |    |
| ASD      | Accelerator S   | ystems Div   | ision          |    |
| CFD      | Conventional    | Facilities [ | ivision        |    |
| ESD      | Experimental    | Systems D    | ivision        |    |

| Avg.%         |                                 |           | Cryogenic Systems | Target Area Utilities | Target Area Remote Handling | Target Area Non-Corv. Utilities | Frag. Sep. Beam Physics |             | Preseparator Magnets | Preseparator Mechanical Systems |                                  |                |
|---------------|---------------------------------|-----------|-------------------|-----------------------|-----------------------------|---------------------------------|-------------------------|-------------|----------------------|---------------------------------|----------------------------------|----------------|
| 49<br>%avail. |                                 |           | T.3.02            | T.4.02.01             |                             | arge                            | . Sep                   | Diagnostics | or Ma                | lech                            | T.4.03.05 A 1900 Reconfiguration |                |
| 63            | Cryogenic Systems               | T.3.02    | 5                 | .4.0                  | T.4.02.02                   |                                 | rag                     | nos         | ırat                 | or M                            | gure                             |                |
| 29            | Target Area Utilities           | T.4.02.01 |                   | _                     | 1.4.0                       | T.4.02.03                       |                         | Olag        | seps                 | arat                            | omfi                             | (n             |
| 33            | Target Area Remote Handling     | T.4.02.02 |                   | $\sim$                | _                           | 1.4                             | T.4.03.01               |             | Pre                  | sep                             | Rec                              | Power Supplies |
| 11            | Target Area Non-Conv. Utilities | T.4.02.03 | V                 | V                     | V                           | 0                               | T.4.(                   | T.4.03.02   | 13                   | Pre                             | 00                               | ldns           |
| 100           | Frag. Sep. Beam Physics         | T.4.03.01 | 0                 | 0                     | 0                           | $\tilde{\circ}$                 | 0                       | T.4.        | T.4.03.03            | 04                              | A 19                             | ver !          |
| 18            | Diagnostics                     | T.4.03.02 | 0                 | V                     | V                           | $\tilde{\circ}$                 | V                       | 0           | T.4.                 | T.4.03.04                       | 92                               | Pov            |
| 64            | Preseparator Magnets            | T.4.03.03 | v                 | Y                     | v                           | Y                               | V                       | 0           | O                    | T.4                             | .03                              | 90             |
| 27            | Preseparator Mechanical Syst.   | T.4.03.04 | Y                 | Υ                     | Υ                           | Υ                               | 0                       | Ÿ           | Υ                    | 0                               | T.4                              | T.4.03.06      |
| 63            | A1900 Reconfiguration           | T.4.03.05 | V                 | 0                     | 0                           | 0                               | 0                       | Υ           | 0                    | 0                               | O                                | T.4            |
| 100           | Power Supplies                  | T.4.03.06 | v                 | v                     | 0                           | 0                               | 0                       | 0           | V                    | v                               | v                                | 0              |
| 89            | Vacuum Systems                  | T.4.03.07 | 0                 | v                     | v                           | 0                               | 0                       | 0           | <u>v</u>             | <u>v</u>                        | v                                | 0              |
| 46            | Low Level Controls              | T.4.03.08 | Y                 | 0                     | 0                           | Υ                               | 0                       | Υ           | <u>v</u>             | Υ                               | v                                | <u>v</u>       |
| 0             | Target and Material Physics     | T.4.03.09 | 0                 | 0                     | 0                           | 0                               | O                       | O           | 0                    | Y                               | 0                                | 0              |
| 100           | Machine Protection System       | T.4.06    | 0                 | 0                     | 0                           | <u>v</u>                        | 0                       | <u>v</u>    | 0                    | <u>v</u>                        | 0                                | <u>v</u>       |
| 25            | Global Timing System            | T.3.04.02 | 0                 | 0                     | 0                           | 0                               | 0                       | Y           | 0                    | 0                               | 0                                | 0              |
| 20            | Central Control Systems         | T.3.13.01 | 0                 | 0                     | 0                           | Υ                               | 0                       | Υ           | Υ                    | 0                               | 0                                | <u>v</u>       |
| 43            | Alignment Systems               | T.3.13.03 | 0                 | 0                     | Y                           | 0                               | 0                       | Y           | <u>v</u>             | Y                               | <u>v</u>                         | Ω              |
| 40            | Personnel Protection Systems    | T.3.13.04 | <u>v</u>          | 0                     | Y                           | 0                               | 0                       | 0           | 0                    | Y                               | 0                                | <u>v</u>       |
|               | ASD Beam Delivery System        | T.3.11    | 0                 | 0                     | Y                           | 0                               | O                       | 0           | 0                    | <u>v</u>                        | 0                                | 0              |
|               | CFD                             | T.2       | <u>v</u>          | Y                     | <u>v</u>                    | Υ                               | 0                       | Y           | 0                    | Y                               | Y                                | <u>v</u>       |
|               | NSCL                            | NA        | 0                 | 0                     | 0                           | 0                               | 0                       | 0           | 0                    | 0                               | Y                                | 0              |


#### Low Level Control Interface Points Defined

- Controls Group responsibilities
  - Cabling between the control system and power supplies and ancillary equipment
  - Ethernet connection to power supplies
  - Where required FPS ADC
- Power Supply Group responsibilities
  - Selection of power supplies and ancillary equipment
  - Cabling between power supplies and ancillary equipment
  - Installation of Direct Current (DC) leads and power supplies
  - FPS DCCTand filter if necessary




### **Magnet Interface Defined**

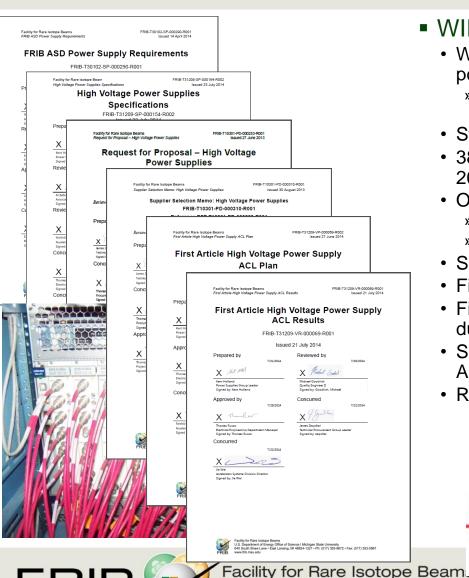
- The magnets will be protected by multiple interlocks provided by controls
- The magnet group will provide
  - Terminal block to which the DC leads are attached
  - If necessary
    - » Wiring between terminal block and magnet
    - » Strain relief for cables
    - » Safety covers —
    - » Polarity labels and testing





## Superconducting Magnet (SCM) PS Procurement Strategy Defined

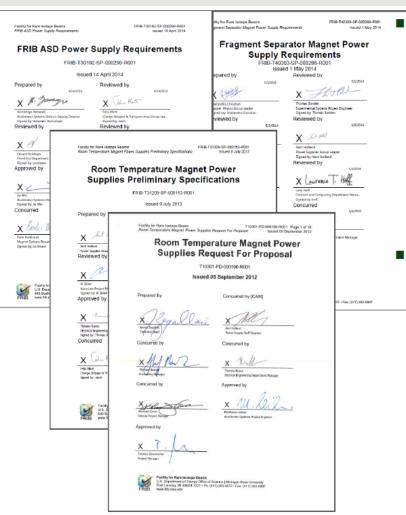



U.S. Department of Energy Office of Science

Michigan State University

- Sigma Phi Electronics (previously Bruker)
- Four in use at NSCL with zero failures since 2007
- A respected company with many PS in service
  - » Provided a detailed proposal
    - » Low technical risk
- Make vs. Buy decision → Buy
- · Sealed competitive bid
- · First Article phase out of three phase contract let
- Supplier visit held 28-30 April 2014 for Factory Acceptance Testing
- Supplier tested on SC magnet successfully
- First Article SCM PS delivered in July, 2014
  - » FRIB Acceptance Testing is underway




## High Voltage (HV) PS Procurement Strategy Defined



- WIENER Plein & Baus GmbH / iseg
  - WIENER MPOD Control Crate and iseg 2-quadrant HV power supply modules for electrostatic quads and dipoles
    - » Higher efficiency and wider operating range than a 1-quadrant PS with output resistor
  - Standalone iseg HV PS for ion source
  - 382 iseg PS and 7 MPODs in use at NSCL, installed 2009-2012, with only one failure (Wiener crate controller)
  - Over 1M HV PS in service around the world
    - » 100k HV PS recently completed for project in Japan
    - » Low technical risk
  - · Sealed competitive bid
  - First article phase out of 2 phase contract let
  - First article HV PS received, and failed acceptance testing due to minor hardware issue
  - Supplier visit held 5-6 May 2014 for revision 1 Factory Acceptance Testing
  - · Rev 1 passed FRIB Acceptance Testing



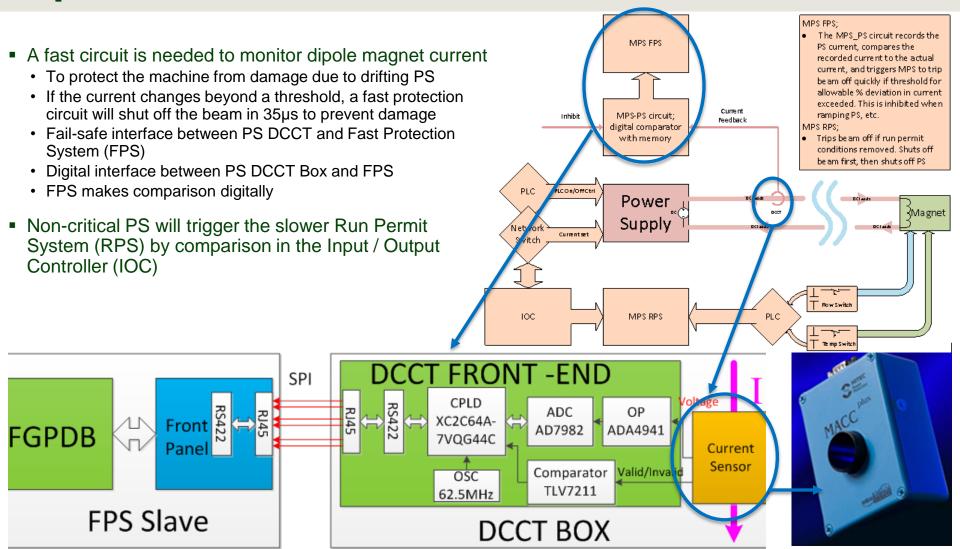
## Room Temperature Magnet (RTM) PS Procurement Strategy Defined



Responses received from initial RFP

- · Multiple qualified sources identified
- Low technical risk
  - » RT power supplies are COTS catalog items
  - » Loaner PS are available from top suppliers if necessary
  - » NSCL has many similar PS in service
    - No first articles are needed

Final Specifications and RFP waiting for;


- Clarification on change in requirements
  - » Series Dipoles
    - Separate RFP will be done for RT Dipole PS
      - » To ensure best value for the project
  - » Minor changes as combined function magnets are now separate function
- Final magnet RFP fall, 2014
  - » Decision for build-to-spec or build-to-print
    - Could cause minor changes in PS requirements
- Source selection on track for early 2015



### **Concluding Remarks**

- NSCL power supply operations, maintenance, and status.
- FRIB power supply requirements.
- FRIB power supply strategies.
- Questions or Comments?

# Machine Protection System (MPS) / Dipole PS Circuit Interface Defined and Tested

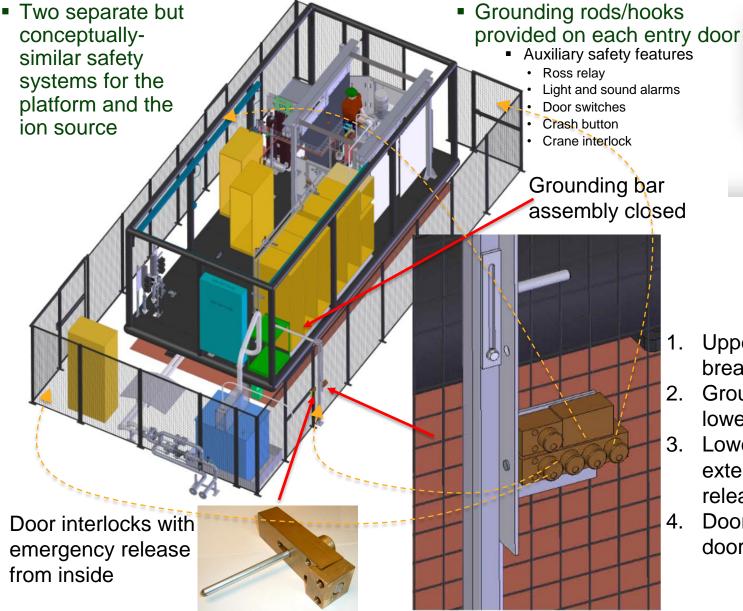


## Electrostatic Dipole HV PS MPS/PPS Interface Defined

- MPS fast solid state abort switch
  - To protect the machine from beam damage, the voltage has to be turned off in ~1uS
    - » Noise on TTL signal will be mitigated by compartmentalizing components in RF enclosures
  - The chopper is a redundant method to abort beam in the required time
- PPS Mechanical shorting switch and AC contactors
  - Ensures no beam in tunnel

PPS will also control the high voltage of the Ion Source through redundant

CH3 5,00kV


Tek Trig'd M Pos: -3.960,us TRIGGER
Type
Edge
Source
Hill
Slope
Falling

Coupling
His Reject

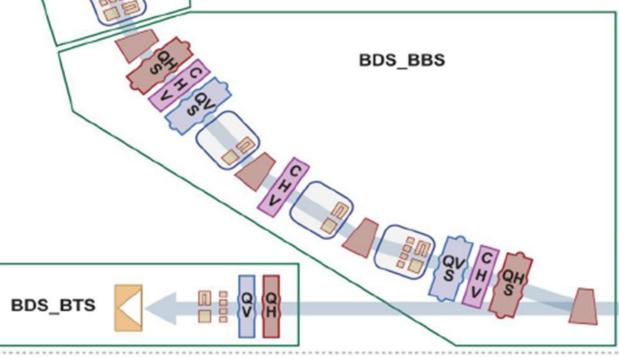
CH1 5.00V M 1.00,us CH1 2.00V

3-Dec-11 03:16

## Ion Source HV Safety Systems Integration Kirk Interlocks Control Access to Platform

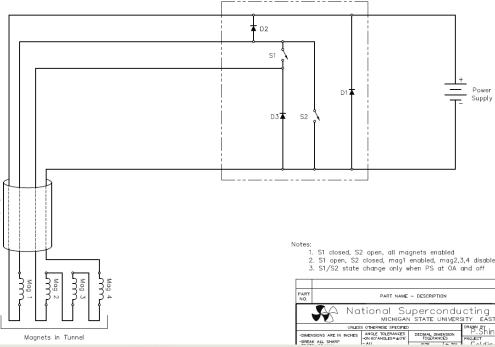


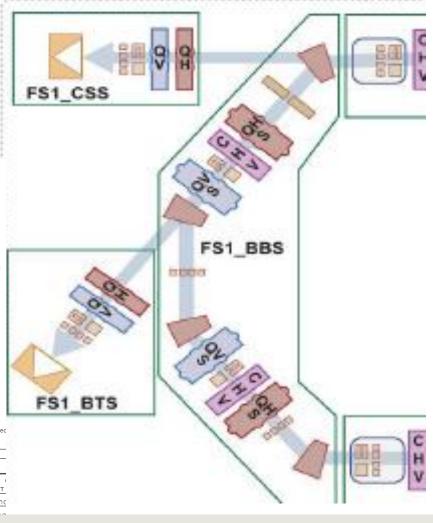



- Breaker locked open
- Lock bolt extended
- Key released

Turn PS off, power breaker off, interlocked, key released

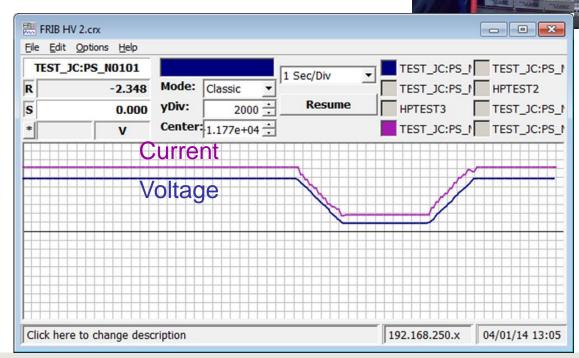
- Upper bolt withdrawn, breaker key trapped
- 2. Grounding bar down, lower hole aligned
- 3. Lower bolt can be extended, door keys released
- 4. Door keys captured in door interlocks


### **BDS Dipole PPS Interface Defined**


- To prevent beam from entering the target area, the bending dipole PS in the BDS will be monitored and controlled redundantly by the PPS
  - To ensure no AC power to the PS is present unless the target area is swept and secure
    - » Four bending dipoles in BDS area to bend the beam from LINAC to target
      - All four dipoles are powered by one power supply
    - » The power supply is equipped with redundant contactors
    - » When target area is occupied
      - PPS opens the contactors
      - Verifies contactor function via auxiliary contacts
    - » Additionally there will be a beam plug to ensure no beam is possible to target area



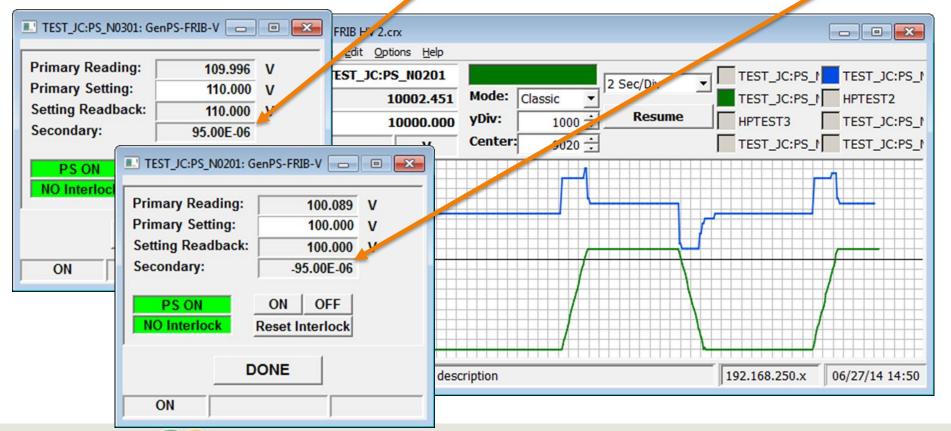
## Magnet Interface Example FS1 Series RT Dipoles


- A disconnect switch is needed in FS1
  - When the FS1\_BTS beam dump line is operating
    - » The first dipole must be on
    - » While the second dipole must be at 0A



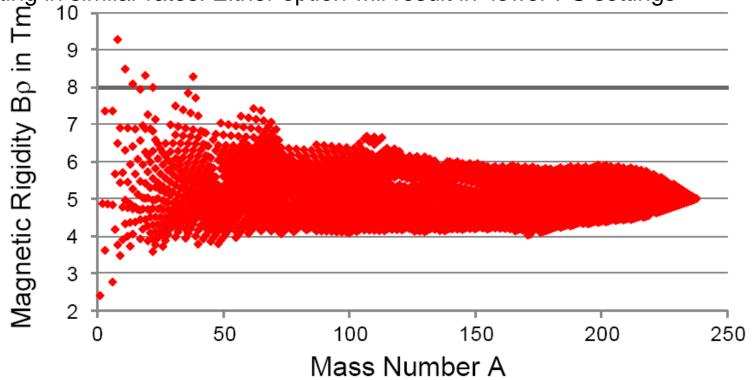


#### **HV PS First Article Status**


- HV PS First Article status
  - Supplier visit held 5-6 May 2014 for revision 1 Factory Acceptance Testing
  - Rev 1 passed FRIB Acceptance Testing
  - Requirements revised no changes for HVPS
  - Specs finalized no changes
- Rev 0 first article HV PS was received in February 2014
  - Testing revealed a hardware issue with the current read-back
    - » With capacitive load, voltage waveform shows textbook 2quadrant operation, however the current measurement did not (I=C\*dV/dt)
  - Revision 1 first article HV PS
    - » Supplier redesigned the current measurement circuit
    - » Revision 1 passed FRIB Acceptance Testing, the current readback issue was resolved






#### Rev 1 HVPS Two Quadrant Current Read-Back Issue Resolved

- Test 1, ramp voltage into capacitive load
- Test 2, Use existing HVPS to source, and force FRIB HVPS to sink thru 100kΩ



### **ESD SCM PS Margin Documented**

- PS requirements based on 8 Tm
- Sufficient margin exists as most beams are at magnetic rigidities below 7 Tm
  - There are alternatives for beams with rigidities higher than 7 Tm by reducing the primary beam energy, or thicker targets could be used, or a combination of the two resulting in similar rates. Either option will result in lower PS settings



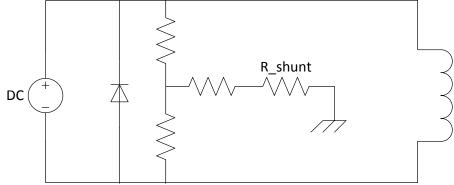
# SCM PS Detailed Design [1] Component Margin Reviewed

- DC link AC/DC max power calculated = 1.1kW
  - AC/DC PS = 2 // 24V 27A = 24V 54A = 1.3kW, 18% margin
    - » Note that DC link power drops while regulating,18% is only while ramping
  - AC/DC input max = 1.42kVA
    - » 2 // 24V 27A PS, input 7.1A @ 100V, =~ 14.2A (~12.9A at 110V)
    - » 14.2A is at 1.3kW, while max DC link power is 1.1kW
    - » ~10.9A at 110V and max 1.1kW DC link
      - Again note that the DC link input current drops while regulating
  - Line filter 16A
    - » 13% margin using the worst case 14.2A
    - » 46% at 10.9A
  - Contactor
    - » Rated for 20A
    - » 40% margin using the worst case 14.2A
    - » 80% at 10.9A
    - » 10M cycles

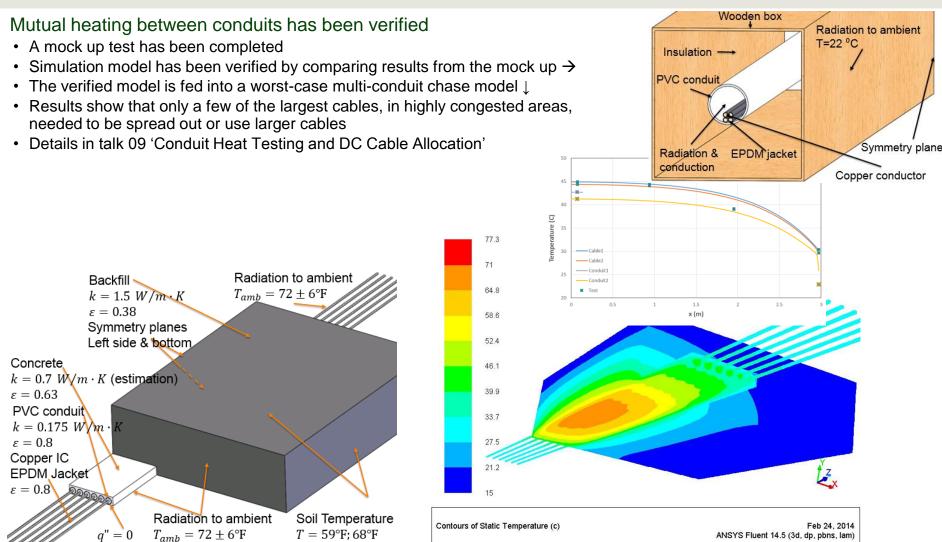
- IGBT
  - Tj calculated 75C, rated 150C
  - >>20k thermal cycles, ~54 years, non-issue
  - Rated 300A @ 80C operating Tc case temperature.
  - Tc is ~ 40C heat sink temp
  - Limited to 70C by the thermal switch.
  - Case is rated for 100C max
- D1 and Chopper elements
  - Contacted Supplier for more info
  - No thermal issues during FAT
- DC filter inductor 125A, 15A @ 20kHz
  - ~45C measured
- DC filter caps
  - rated 200V, dump voltage 80V
  - rated at magnet current
  - 11k hrs. @ 85C, Sigma Phi claims 8X expected lifetime at 55C, 88k hrs. = ten years
  - Ambient air inside chassis measured ~40C

# SCM PS Detailed Design [2] Component Margin Reviewed

- Dump Resistor
  - 20% margin added to stored energy
  - Simulations showed the housing temp = 115C (peak housing temp is ~3min after t0), and wire = 750C
    - » 'Compact Brake Resistor' rated for 1200C
    - » Datasheet states 'if temperature rise is less than 900-1000K the resistor should work for your application'...'However it is recommended to verify the results of the simulation'
    - » The simulation was verified as part of the FAT
      - 3 min after t0, the housing temp = 72C which is better than the simulation
- DCCT 200A
- Summary of component review
  - The 100A power supply is built to run at 6V / 100A continuously
  - Running at 2V / 95A continuously for operations is not desired, but acceptable
    - » Fallback position is to run solenoids at lower fields (95A is for 8T, 7T is acceptable)


- Cables
  - AC = 14AWG,
    - » rated 32A for chassis wiring
    - » worst case 14.2A
    - » ~10.9A at 110V and max 1.1kW DC link
  - DC link 1 = 12AWG
    - » rated 41A for chassis wiring
    - » worst case 27A
    - » ~23A (from Sigma Phi calculation)
  - DC link 2 = 8AWG
    - » rated 73A for chassis wiring
    - » worst case 54A
    - » ~46A (from Sigma Phi calculation)
  - DC Out = 2AWG
    - » rated 181A for chassis wiring
    - » worst case 107.5A

## Grounding Plan HV and SC PS Complete. RT PS Under Consideration


- The PS chassis (equipment ground) must be firmly tied to the facility ground mesh (FGM)
- The DC output grounding;
  - HV cables are coaxial with a ground braid firmly tied to the FGM
  - SCM PS ≥100A will have an internal hard ground with ground fault detection
  - RTM PS grounding under consideration, PS above a certain current will be either be;
    - » Soft grounded, with a high resistance to both output terminals, a conceptual design is shown in the figure 4. The existing protection diode box would be modified to incorporate soft ground resistors with provisions for future ground fault monitoring by either;
      - Shunt resistor, with analog input to PLC
      - Optocoupler, with digital input to PLC

» Hard grounded thru an indicating fuse, with digital input to PLC. Could be incorporated in diode box

- » PLC inputs may be future upgrade
  - Baseline is preventive maintenance task
    - » Check for ground faults annually
- » Modify existing NSCL diode box
  - Diode selection is underway



# DC Cable Conduit Heat Mock Up Test and Simulations – Ensures Properly Rated Cables



